

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
4 May 2007

3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE
An Examination of acceptable navigation accuracy for
LISA orbits
Smythe, Reid W.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
360 (2007)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACTThis project assessed the accuracy with which a formation of satellites, the Laser Interferometer
Space Antenna (LISA), must be placed into orbit. The LISA formation will consist of three satellites orbiting the
Sun, forming an equilateral triangle. The first phase dealt with the formation parameters (leg length, leg length
time rate of change, interior leg angle, and formation-sun-earth angle) as a function of time. Duplication of plots
contained in other papers on the topic validated the output of the analysis code. Preliminary analysis indicated the
values of each parameter varied sinusoidally, and increasing the initial error conditions tended to reduce the time
each parameter fell within the acceptable tolerance values. The second phase dealt with analyzing formation
parameters as a function of the error size of specific initial conditions. Two of the eighteen state variables were
varied simultaneously, resulting in a surface plot indicating how long a particular formation parameter was out of
specification over the lifetime of the mission. The formation was most sensitive to velocity errors in the in-track
direction. Furthermore, it appeared that one error can counter-act another error, agreeing with other papers on this
topic. The third phase analyzed the effect of varying all eighteen variables simultaneously. A plot was created to
show how the value of time out of specification for the leg length rate of change changes as the initial state
variable tolerance changes. As the maximum variation in position and velocity errors increased, there was a
corresponding increase in the amount of time the formation parameter was out of specification. A cross-section of the
surface was created with position error range remaining constant while varying velocity error range. With an assumed
maximum position error of zero, the formation tended to start going out of specification at a velocity error
magnitude of ±2 6 cm/sec

15. NUMBER OF PAGES
60

14. SUBJECT TERMS
LISA, satellite, formation, insertion error

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298
 (Rev.2-89) Prescribed by ANSI Std. Z39-18

298-102

U.S.N.A. --- Trident Scholar project report; no. 360 (2007)

An Examination of Acceptable Navigation Accuracy for
LISA Orbits

by

Midshipman 1/c Reid W. Smythe
United States Naval Academy

Annapolis, Maryland

(signature)

Certification of Advisers Approval

Visiting Professor Dr. Richard Fahey
Aerospace Engineering Department

(signature)

(date)

Professor Dr. Daryl Boden, Chair,

Aerospace Engineering Department

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Deputy Director of Research & Scholarship

(signature)

(date)

USNA-1531-2

 1

Abstract

This project assessed the accuracy with which a formation of satellites, the Laser
Interferometer Space Antenna (LISA), must be placed into orbit. The LISA formation will
consist of three satellites orbiting the Sun, forming an equilateral triangle.
 The first phase dealt with the formation parameters (leg length, leg length time rate of
change, interior leg angle, and formation-sun-earth angle) as a function of time. Duplication of
plots contained in other papers on the topic validated the output of the analysis code.
Preliminary analysis indicated the values of each parameter varied sinusoidally, and increasing
the initial error conditions tended to reduce the time each parameter fell within the acceptable
tolerance values.
 The second phase dealt with analyzing formation parameters as a function of the error
size of specific initial conditions. Two of the eighteen state variables were varied simultaneously,
resulting in a surface plot indicating how long a particular formation parameter was out of
specification over the lifetime of the mission. The formation was most sensitive to velocity
errors in the in-track direction. Furthermore, it appeared that one error can counter-act another
error, agreeing with other papers on this topic.
 The third phase analyzed the effect of varying all eighteen variables simultaneously. A
plot was created to show how the value of time out of specification for the leg length rate of
change changes as the initial state variable tolerance changes. As the maximum variation in
position and velocity errors increased, there was a corresponding increase in the amount of time
the formation parameter was out of specification. A cross-section of the surface was created
with position error range remaining constant while varying velocity error range. With an
assumed maximum position error of zero, the formation tended to start going out of specification
at a velocity error magnitude of ±2.6 cm/sec.
KEYWORDS: LISA, satellite, formation, insertion error

 2
Acknowledgements

First and foremost I wish to acknowledge my research advisors, Dr. Richard Fahey and Dr. Daryl
Boden, who provided me with the inspiration for hours of work after short conversations. Dr.
Ted Sweetser at JPL was instrumental in providing the propagator to me as well as making it
work by providing his own script for LISA propagations. Dr. Stephen Merkowitz of Goddard
Space Flight Center shared both his time and knowledge of LISA without which this project
would have lost a lot of direction. Finally, the Trident Scholar Committee gave ample
motivation and feedback to ensure that everything was finished on time.

 3
Table of Contents

Abstract ... 1
Acknowledgements... 2
List of Figures ... 5
List of Tables .. 5
List of Symbols ... 6
Overview... 7
Background... 7

Gravitational Waves.. 7
Interferometers.. 8
Satellites.. 10
Orbit Propagation and Analysis .. 12

Analysis... 14
Phase One - Insertion Error Analysis.. 16

Background... 16
Formation Analysis With Respect to Time... 17
Formation Analysis With Respect to Two Input Variation 20
Formation Analysis of Full Input Variation.. 23

Conclusions... 26
Future Work .. 27

Phase Two - Tracking System Accuracy .. 27
References... 28
Appendix A – Sample Analysis.. 29

Position Errors Along Various Directions .. 29
Velocity Errors Along Various Directions ... 31
Position-Velocity Errors Along Various Directions ... 33
Multi-Spacecraft Errors of Similar Type .. 35

Appendix B – Rainplot ... 36
Appendix C – Analysis Tools ... 37

Time Domain Analysis ... 37
Error Domain Analysis ... 37

Two Parameter Variation.. 37
Full Parameter Variation... 37

Appendix D – Analysis Code ... 38
Miscellaneous Scripts ... 38

Initialize.m .. 38
datafilename.m.. 38
datacheck.m .. 39
CurRunVar.m.. 39
md5.m ... 39

Time Domain Analysis Scripts ... 41
maganalysis.m... 41
FormAnal.m.. 42

 4

analysisplotter.m ... 43
baselineplots.m.. 44

Error Domain Analysis – Two Parameter Variation Scripts .. 46
SFDG.m .. 46
LRAdbLoad.m .. 47
legrateanalyzer.m.. 48
LRAdbTempSave.m ... 49
LRAdbSave.m... 49
LRATPctGraph.m... 50

Error Domain Analysis – Full Parameter Variation Scripts ... 50
MCDG1.m .. 50
MCDG25yr.m ... 50
MCDG2LRA5yr.m ... 50
legrateanalyzer5yr.m... 52
LRAPooSLoad5yr.m .. 53
LRAPooSSave5yr.m... 53
Rainplotter.m .. 54

Error Domain Analysis – Full Variation Rainplot Cross-Section Scripts 55
initialize.m .. 55
MCDG1b.m .. 55
MCDG25yrb.m ... 55
MCDG2LRA5yrb.m ... 56
LRAPooSLoad5yrb.m .. 57
LRAPooSSave5yrb.m... 57
rplotcs.m.. 57

 5
List of Figures
Figure 1. A Michelson Interferometer .. 8
Figure 2. A Diagram of the Classical Orbital Elements ... 9
Figure 3. The Topocentric Horizon Coordinate System... 11
Figure 4. The LISA Formation in Orbit.. 14
Figure 5. The LISA Formation as an Interferometer .. 15
Figure 6. The LISA Formation Parameters... 15
Figure 7. A Simple Ballistics Example... 16
Figure 8. A Complex Ballistics Example ... 17
Figure 9. Baseline Leg Length Rate of Change for LISA .. 18
Figure 10. The RTN Coordinate System .. 19
Figure 11. Leg Length Rate of Change Plot with Inserted Error.. 20
Figure 12. R-T Position Error Analysis .. 21
Figure 13. R-VR Error Analysis .. 22
Figure 14. RS/C 1 (right axis) vs RS/C 2 (left axis) Analysis ... 23
Figure 15. The Rainplot .. 24
Figure 16. The Rainplot Cross-section ... 25

List of Tables
Table 1. Equations for the Classical Orbital Elements ... 10
Table 2. LISA Formation Parameter Limits ... 14

 6

List of Symbols

I – Unit vector in the direction of the first axis
K – Unit vector in the direction of the third axis

⊕R – Earth position vector

CR – Formation center position vector

⊕R – Earth position vector magnitude

CR – Formation center position vector magnitude

Ê – Unit vector in the East direction
Ŝ – Unit vector in the South direction
Ẑ – Unit vector in the vertical direction
a – Semi-major axis
e – Eccentricity
d – Leg length rate of change
d – Leg length
h – Angular momentum vector
h – Angular momentum vector magnitude
i – Inclination
r – Position vector
r – Position vector magnitude
n - Line of nodes vector
n – Line of nodes vector magnitude
v – Velocity vector
ω – Argument of periapsis
e – Eccentricity vector
Az – Azimuth
el – Elevation
Ω – Longitude of ascending node
ε – Specific mechanical energy
θ – Interior leg angle
µ – Gravitational parameter
υ – True anomaly
lagν – Formation-Sun-Earth angle

ρ – Slant range

 7

Overview
This project assessed the accuracy with which a particular constellation of satellites, the

Laser Interferometer Space Antenna (LISA), must be placed into orbit in order to enter into and

maintain formation over the life of the mission.

 The success of this mission depends heavily on the ability to place the satellites in their

proper orbits. Slight errors in the orbital insertion become larger over time, and reduce the life of

the mission. Due to the current proposed construction of the spacecraft, mid-life orbit

corrections are unlikely to be available, further emphasizing the necessity of the accurate

placement of the satellites into the correct orbit.

 By performing a detailed analysis of the effects of errors on formation parameters over

time, this project can effectively tell the LISA design team the allowable tolerance in initial

conditions to achieve the desired performance of the formation parameters over the life of the

LISA mission.

Background

Gravitational Waves

 Introductory physics courses discuss electromagnetic (EM) waves that travel in one

direction with a sinusoidal electric field and magnetic field perpendicular to the direction of

propagation and to each other. These are generated by the acceleration of charged particles and

are the means for wireless communications. The waves create signals in antennas through the

process of induction, providing an easy method of detection. Gravitational waves, on the other

hand, come from the acceleration of mass. Predicted by Einstein, these waves are yet to be

 8
directly detected. In 1993, Drs. Russell Hulse and Joseph Taylor indirectly found evidence of

their existence through measurements of a binary star system.1

 Gravitational waves affect space as they travel, causing contractions and expansions.

Two masses set apart at a given distance would have the distance between them changed without

moving as a gravity wave passes between them. So theoretically, detection of gravitational

waves would be possible if the precise distance between two masses with no relative motion

between each other is continuously measured with an accurate ruler2.

 Currently there are several projects attempting to detect these waves, including the Laser

Interferometer Gravitational-Wave Observatory (LIGO), TAMA (a Japanese detector), the

proposed LISA project, and others. In most cases the projects use interferometers as the basis for

detection.

Interferometers

Interferometers operate based on the principle of constructive and destructive

interference. Two waves in phase with each other will have constructive interference and appear

stronger than either when added together, while two waves out of phase with each other will

1 Faye Flam, “Physics: A Prize for Patient Listening.” Science 262 No. 5133 (1993): 507-508

Figure 1. A Michelson Interferometer3

 9
have destructive interference and appear weaker than either when combined. Figure 1

a diagram of a typical interferometer setup. The first box shows light coming from a source and

being split by a mirror into two legs. Boxes 2 and 3 show each leg being traversed and the lig

returning to a photo detector. When comparing the legs, constructive interference appears as

bright spots while destructive interference appears as dark spots.

 Given an interferometer with known distances between the legs, the interference pattern

can be used to calculate the wavelength of the type of wave being examined. Likewise, a w

 provides

ht

ave

very precisely through

Doppler shif nges in the interference pattern.

of a specific wavelength can be used to measure changes in distance

t and phase variation of the wave causing visible cha

Figure 2. A Diagram of the Classical Orbital Elements4

2 Peter Saulson, “If light waves are stretched by gravitational waves, how can we use light as a ruler to detect
gravitational waves?” American Journal of Physics 65, no. 6 (1997): 501-505.
3 “How LISA Works” n.d., <http://lisa.nasa.gov/TECHNOLOGY/LISA_interfer.html> (19APR2007)
4 Kim Dismukes, “Orbital Elements.” 2002. <http://spaceflight.nasa.gov/realdata/elements/graphs.html>
(19APR2007)

 10
Satellites

 The first man-made object to orbit the Earth, Sputnik, signaled the beginning of serious

space operations. Many types of satellites were quickly developed including

telecommunications, remote sensing, and exploration.

 All types of satellites orbit in the

described on a ba

laws: the Earth orbits the Sun in an ellipse

Table 1. Equations for the Classical Orbital Elements5

same way: they fall towards the object about

which they orbit, and miss it; they are in

constant motion. This motion can be

sic level by using Kepler’s

with the Sun at one focus, a line connecting

the Earth and the Sun will sweep out equal

areas in equal time intervals, and the square

of the orbital period is proportional to the

cube of the major axis of the orbit.

 Six elements are needed to determine

particular orbits, as seen in Figure 2, with associated equations in Table 1. These Classical

Orbital Elements (COEs) describe the basic components of the orbit, where µ is a constant

called the gravita

Orbital
Element Equation

Semi-major
Axis ε

µ
2
−

=a

Eccentricity ()21e
r
µ

µ
  = − − ⋅    

v r r v v

Inclination 





 ⋅

= −

h
i Kh1cos

Longitude of
Ascending

Node






 ⋅

=Ω −

n
In1cos

Argument of
Periapsis 






 ⋅

= −

ne
en1cosω

True Anomaly 1cos
er

ν − ⋅ =  
 

e r

ε is the specific mechanical energy of the satellite. The

mi-mse ajor axis defines the size of the orbit, the eccentricity defines how circular the orbit is,

and the inclination defines how the orbit is oriented with relation to the body being orbited. The

longitude of ascending node indicates where the orbit crosses the equatorial plane of the object

tional parameter, and

 11
being orbited, the argument of periapsis is the closest point between the orbit and the object

being orbited, and the true anomaly defines where the satellite currently is along the orbit.

 There are special cases of orbits where one or more of the terms must be changed (such

as circular orbits), however none of those apply to this project. These orbital elements can be

calculated from position vector and velocity vector data (r and v), which can be determined

through the analysis of azimuth, elevation, range, and the time derivative of each. The azimuth,

objects in Ea spheric drag, irregular gravity

fields due to a non-spherical, non- the spacecraft, solar wind,

objects in Ea spheric drag, irregular gravity

fields due to a non-spherical, non- the spacecraft, solar wind,

elevation, range and rate of change of each come from a tracking system. They are given in the

topocentric (location centered) horizon coordinate system as seen in Figure 3.

 Actual orbits vary with time. Environmental perturbations cause these variations. For tal perturbations cause these variations. For

rth orbit, perturbations include such things as atmo

homogeneous Earth, out-gassing of

rth orbit, perturbations include such things as atmo

homogeneous Earth, out-gassing of

amentals of Astrodynamics and Applications. New York: McGraw-Hill, (19

Figure 3. The Topocentric Horizon Coordinate System

5 David Vallado, Fund 97): 130.

 12
solar radiation, the influence of third bodies such as Jupiter, and many others. When

determining where a satellite will be at a given time, all factors must be included in the

calculations or the answer will not be accurate. Furthermore, measurement instruments all have

inherent errors. Radar must travel through the atmosphere which can affect the wave’s velocity

and path. There is a measurable time delay between when the radar wave is transmitted and

received. The radar equipment may be slightly mis-calibrated. Thus, orbits always change

slightly, and there is some amount of error present in all operations. Even planning orbits

introduces some amount of uncertainty, as the propagator, the software package used to predict

the orbit, may not include nor model in the same manner all perturbations that will affect the

system, and the finite precision of computers produces some rounding errors.

Orbit Propagation and Analysis

 Orbit propagation involves the prediction of where a satellite will be at a future point in

e conditions can come in a variety of ways: orbital

lemen

 (1), and integrates it over some specified period of time. In an ideal case, this would

ean t

time given a set of current conditions. Thes

e ts, position and velocity vectors, or azimuth, elevation, range and associated time rates of

change.

 A propagator takes the differential equation of motion for a two-body system given by

Equation

m hat only true anomaly, ν , changes.

µ
+ = 3r

r r 0 (1)

Thus, given a new value for ν the old values for the rest of the COEs can be used to calculate

new r and v. Unfortunately, perturbations cause other orbital elements to vary with time.

 13
 Propagators used to design actual orbits take into account perturbations when

calculating a position based on data, and the accuracy depends on how precise

ly the

erturb

have a calculable affect on the other

ompo

e can be calculated. From this, the

p ations have been implemented in the program. This means that the accuracy of the

propagator results will decrease as it calculates further and further into the future.

 So long as unaccounted external forces do not interact with objects in orbit, variations in

one component of the position and velocity vectors will

c nents. For example, assume a satellite has a known position <x, y, z> and velocity

<u, v, w>. This information allows an orbit to be predicted. If a micro-meteorite hits the

satellite and changes the value of u slightly, all other later values for x, y, z, v, and w will be

different than what the initial orbit design would predict.

 By varying the initial state of every variable and propagating over the design life of a

mission, the effect of insertion errors on an orbit over tim

insertion accuracy can be determined based on the required tolerance of the orbit. Analyzing a

large number of simulated orbits whose parameters are bounded by known error is termed a

Monte-Carlo method: the use of a sufficiently large base of statistical data on a system allows the

system to be numerically modeled. This is a much simpler method for modeling a complex

system than analytically deriving exact solutions.

 14
Analysis

A project will place three satellites in orbit around the Sun as seen in Figure 4.

The formation will trail the Earth by about 20° as measured by the formation-sun-earth angle,

and orbit in the shape of five million kilometers.

Within each satellite will be a test mass free of

e some natural oscillation of the leg-

ct will place three satellites in orbit around the Sun as seen in Figure 4.

The formation will trail the Earth by about 20° as measured by the formation-sun-earth angle,

and orbit in the shape of five million kilometers.

Within each satellite will be a test mass free of

e some natural oscillation of the leg-

 The LIS

 an equilateral triangle with leg lengths of an equilateral triangle with leg lengths of

Figure 4. The LISA Formation in Orbi

external forces. Each leg will be connected by a

laser, forming a Michelson interferometer shown in

Figure 5. As gravitational waves pass through the

legs of the interferometer, the distance between the

test masses will change. This will be detected by

combining the signals from the two legs and

examining the interference pattern due to the

Doppler shift.

 Due to the dynamic nature of the orbits, there will b

external forces. Each leg will be connected by a

laser, forming a Michelson interferometer shown in

Figure 5. As gravitational waves pass through the

legs of the interferometer, the distance between the

test masses will change. This will be detected by

combining the signals from the two legs and

examining the interference pattern due to the

Doppler shift.

 Due to the dynamic nature of the orbits, there will b

lengths and angles between the satellites. Figure 6 depicts the formation parameters which have

lengths and angles between the satellites. Figure 6 depicts the formation parameters which have

6 “Mission Strategy”, n.d., <http://lisa.jpl.nasa.gov/STRATEGY/getThere.html> (19APR2007)

 Formation
Parameter Specification

d (Leg Length) 6 55 10 1 10⋅ ± ⋅ km
d (Leg Length
Time Rate of

Change)
0±15 m/s

θ (Interior Leg
Angle)

60°±1.5

lagν (Formation,
Sun, Earth Angle)

22.5°±2.5

Table 2. LISA Formation Parameter Limits

t6

 15
strict requirements regarding these oscillations: the rate of change for each leg length (d) can

not exceed 15 m/s, the leg length (d) must be within 2% of 5 million km, the interior angles (θ)

must be 60°±1.5, and the lag angle between the formation and the Earth in the Earth’s orbit (lagν)

can be no less than 20° and no more than 25°7. See Table 2.

Figure 5. The LISA Formation as an
Interferometer8

Figure 6. The LISA Formation Parameters9

 The propagator used for this project is LTool. Developed for JPL, it is a library of

Python scripts that takes into accounts such things as solar radiation, the gravitational effects of

Jupiter, and other perturbations when propagating orbits. Python itself is a modern, platform-

7 Hughes, Steven, “Preliminary Optimal Orbit Design for the Laser Interferometer Space Antenna (LISA).”

 16
independent language that has been in use since the early 1990s. Since LTool has already

been used for the mission planning of previous JPL missions, the software can be considered

mature and able to produce reliable data.

Phase One - Insertion Error Analysis

Background

 to minimize the unwanted formation changes occurs at orbital insertion.

point with the desired velocity a the navigation system of the

Insertion Error Analysis

Background

 to minimize the unwanted formation changes occurs at orbital insertion.

point with the desired velocity a the navigation system of the

 One way One way

Achievement of the design orbit occurs by entering the orbit as closely as possible to the desired

craft used to insert the satellites. With six variables describing the state of each satellite at

insertion (epoch), there are a total of eighteen input variables that must be varied to properly

examine the system. To put this in perspective, consider a simple ballistics problem: if a gun

fires a projectile at some unknown angle with a given initial velocity, how far will the projectile

travel? This problem contains one single variable, the angle at which the gun fires. Thus, a

Achievement of the design orbit occurs by entering the orbit as closely as possible to the desired

craft used to insert the satellites. With six variables describing the state of each satellite at

insertion (epoch), there are a total of eighteen input variables that must be varied to properly

examine the system. To put this in perspective, consider a simple ballistics problem: if a gun

fires a projectile at some unknown angle with a given initial velocity, how far will the projectile

travel? This problem contains one single variable, the angle at which the gun fires. Thus, a

9 “How LISA Works” n.d., <http://lisa.jpl.nasa.gov/TECHNOLOGY/challenges.html> (19APR2007)

Figure 7. A Simple Ballistics Example

t the desired time. This depends ont the desired time. This depends on

8 “LISA Interferometry” n.d., <http://lisa.jpl.nasa.gov/TECHNOLOGY/LISA_interfer2.html> (19APR2007)

 17
model can be easily constructed and represented on a two-dimensional plot as seen in Figure

7. If the initial velocity also varies, then the problem becomes more complex. Figure 8 shows

the solution to the two variable ballistics problem, with the colors indicating height along the

vertical axis. Beyond two variables, a simple input to output relationship becomes difficult to

icture.

orm

B®, and the position and velocity vectors are manipulated via Equations (2), (3),

), and (5).

p

F ation Analysis With Respect to Time

 The first step in this analysis involved developing the necessary algorithms to convert the

output of the propagator into the formation parameters. To achieve this the data are imported

into MATLA

(4

,i j i jd = −R R

() (),i j i j i jd = − ⋅ −V V R R

 (2)

 (3)

Figure 8. A Complex Ballistics Example

 18

() ()1

, ,
, ,

cos i j i k
j i k

i j i kd d
θ −

 − ⋅ −
=

 

R R R R



 (4)

 1cos C
lag

CR R
ν − ⊕

⊕

 ⋅
= 

 

R R
 (5)

Each of these parameters is then plotted with respect to time. In the case of ideal initial

conditions, Figure 9 shows 1,2d over the course of ten years. The data for the initial condition

were validated at this point in that the graph produced from this analysis matched the graph

produced in published papers on the topic of LISA orbits10. Following this successful analysis,

Figure 9. Baseline Leg Length Rate of Change for LISA

10 Ted Sweetser, “LISA Mission Description Version 2.1.” 2005.

 19
the next step involved introducing errors into the nominal conditions and seeing how they

affected the parameters.

 To make the errors more understandable with respect to their orientation, all vectors were

converted to the RTN coordinate system shown in Figure 10. The radial axis (R) goes in the

direction from the central orbited body to the spacecraft, the cross-track axis (N) is in a direction

perpendicular to the ecliptic plane, and the in-track direction (T) is perpendicular to the plane

formed by the radial and cross-track directions axes. This allowed simple understanding of how

the initial errors affected the initial spacecraft positions and velocities. An arbitrary error

composed of 8 1 meters in the radial direction and -2 m/sec in the radial velocity was inserted

into the initial conditions of spacecraft one and propagated over the same ten year period.

 shows the output for

50⋅

1,2d . 2,3d remains unaffected from the change, while both 1,2d and 1,3d

show a less than ideal curve with both exceeding the limit of 15 m/s for a significant amount of

time. Both results were as expected, however this approach did not represent a good way to

examine many variations of the initial conditions since only one error condition could be

analyzed at a time.

Figure 10. The RTN Coordinate System

Figure

11

 20

Formation Analysis With Respect to Two Input Variation

 Moving from the time domain to an initial position and velocity variation domain

required the creation of a metric by which each formation could be analyzed and compared to the

others. Following discussions with Dr. Stephen Merkowitz at Goddard Space Flight Center, it

was determined that percent time out of specification for the leg length rate of change parameter

for all legs would be the best metric. Due to the sinusoidal behavior of the formation parameters

as seen in , the resulting analysis could be easily compressed and stored using only the

times of the specification-boundary crossings.

Figure 11

Figure 11. Leg Length Rate of Change Plot with Inserted Error

 21
Since eighteen initial parameters exist, and this analysis takes into account only two,

there are several different sub-types to consider. Formation sensitivity to position or velocity

errors along different directions forms one subtype, as seen in . This compares how

either a position or velocity error along one direction affects the metric versus a similar error

along a different direction, with the colors again denoting height along the vertical axis.

 shows sensitivity to position error versus sensitivity to velocity error in specific directions.

This allows comparisons between initial position and initial velocity errors, including how

having them occur in different directions changes the formation’s sensitivity to each. Finally, the

analysis can include an examination of how the position or velocity error of two different

spacecraft affects the metric, shown in . In Figures 12-14, I assumed the other 16

 . This compares how

either a position or velocity error along one direction affects the metric versus a similar error

along a different direction, with the colors again denoting height along the vertical axis.

 shows sensitivity to position error versus sensitivity to velocity error in specific directions.

This allows comparisons between initial position and initial velocity errors, including how

having them occur in different directions changes the formation’s sensitivity to each. Finally, the

analysis can include an examination of how the position or velocity error of two different

spacecraft affects the metric, shown in . In Figures 12-14, I assumed the other 16

Figure 12Figure 12

Figure 12. R-T Position Error Analysis

Figure

13

Figure

13

Figure 14Figure 14

 22
variables remained at their nominal values. Appendix A contains an example of a partial

analysis of the Leg Length Rate of Change parameter for leg 1-2.

Figure 13. R-VR Error Analysis

 The shape of each of the previous three figures indicates that all initial parameters have

an ideal value that minimizes the time out of specification, and values above or below that

adversely affect the formation. Furthermore, the slope of the surface at a given point represents

the sensitivity of the particular formation parameter being viewed to changes in initial condition.

It also appears that errors can essentially cancel each other out in terms of their affect on the leg

length rate of change metric.

 23

Figure 14. RS/C 1 (right axis) vs RS/C 2 (left axis) Analysis

Formation Analysis of Full Input Variation

 Because the propulsion vehicle will introduce error in all directions for both position and

velocity, the analysis of two-input variation does not accurately represent a real situation.

However, it is very difficult to visualize 18-dimensional space. This led to the creation of a new

approach to represent the effects of errors on the formation metric: the “rainplot”. Achieving the

level of detail seen in the two-parameter variation analysis did not seem realistic for 18

dimensions. A reduction in the information presented by the input error axes to only the

maximum variation of the position and velocity variables provided a plane on which the

formation metric along the orthogonal axis could be plotted.

 24
 A set of initial formation conditions based on evenly distributed errors whose

magnitude fell within the maximum variation given by a coordinate on the input Position-

Velocity (P-V) plane provided the orbital conditions to propagate and analyze. The output

consisted of plotting the time out of specification metric for the leg length time rate of change

formation parameter along the perpendicular axis directly above the P-V coordinate for that run.

By assuming that the metric would converge around a number, given a large enough

sample size, the data from many different runs could be represented by single points. To limit

the time required to create each point 50 runs was used as the standard sample size. Clumping of

these points around a particular value indicates the validity of the convergence assumption. By

testing different coordinates on the P-V plane, the plot shows the overall formation sensitivity to

Figure 15. The Rainplot

 25
bounded uncertainties. Figure 15 shows the results after roughly 700 runs and the analysis of

over 105,000 propagations. Each ‘x’ represents one run, while an ‘o’ is plotted on the P-V plane

directly under each ‘x’ to more easily identify the error coordinates.

 The expected trend of increased mean percent time out of specification as the error limits

are increased in both directions is clearly visible, with a much greater sensitivity to velocity

errors rather than position errors on the scale presented. The peaks and valleys associated with

the rainplot indicate that statistical convergence did not occur.

 Since the velocity error dominates again, creating a cross-section of the rainplot at some

specific position error provided a less computationally intensive method to obtain similar results.

Figure 16 shows a cross-section where position error is assumed to be zero. This plot is

Figure 16. The Rainplot Cross-section

 26
composed of 720 runs spread through 10 different velocity error values with a total of over

108,000 propagations analyzed. The line on the plot connects each the mean of each tested value

and is not a regression. The data clearly have started to converge to what appears to be a power

function, with one outlier at V = 6.1 cm/s. Though most likely a statistical aberration, it could be

due to resonance between the MATLAB® random number generator and the propagator. Less

likely, there could be some astrodynamical cause.

Conclusions

 Through the use of increasingly complex methods of analysis, the dynamics of the

formation of the three LISA satellites can be effectively examined in an error domain. It has

been shown that position and velocity errors have a preferred direction along which they have

the greatest effect on the formation. In particular, the formation appears to be much more

sensitive to velocity errors in the in-track direction rather than position errors in the radial

direction. It also appears that for the examined metric, leg length rate of change, insertion errors

can cancel their effects.

 Both the rainplot and the two input variation analyses indicate that the velocity error

terms dominate the dynamics of the formation with regards to leg length rate of change. Because

of this, a cross-section of the rainplot surface can be examined in greater detail for the same

computational requirements to examine a specific range of velocity error for a given position

error. As the error threshold increases, the expected time out of specification also goes up.

Furthermore, it appears that until the error threshold in the velocity direction reaches ±2.6 cm/sec

the formation will tend to stay in specification for the leg length rate of change parameter.

 27
Future Work

Phase Two - Tracking System Accuracy

 Beyond insertion errors, tracking errors affect how the formation is viewed. This

information is important so the natural dynamics of the formation as each satellite goes around

its orbit causes the formation to change. This must be accounted for so that the change in length

due to the gravitational waves can be observed. Tracking will occur through NASA’s Deep

Space Network.

 The Deep Space Network is composed of three communications facilities spaced

approximately 120 degrees of longitude apart with one in Spain, one in California, and one in

Australia.11 This network provides the capability to track and communicate with spacecraft to a

very great distance, or with a weak communications system. It can track objects very accurately;

however, as with any real system, it has inherent error due to noise, design tolerances, and

similar causes. There are thus two groups of errors: precision errors caused by the finite number

of decimal places available to the computers, and accuracy errors due to physical measurement.

 These inherent errors cause the satellites to be observed with different state vectors than

those they actually have, which changes the observed formation. This can affect the ability of

the LISA team to successfully perform the mission and detect gravitational waves. A follow-on

stude of these errors would be the next step in this process.

11 “Deep Space Network Home Page” n.d., <http://deepspace.jpl.nasa.gov/dsn/> (19APR2007)

 28

References

Deep Space Network Home Page. n.d.,
 <http://deepspace.jpl.nasa.gov/dsn/> (07DEC06).

Dismukes, Kim, “Orbital Elements.” 2002.
 <http://spaceflight.nasa.gov/realdata/elements/graphs.html> (19APR2007).

Flam, Faye, “Physics: A Prize for Patient Listening.” Science 262 no. 5133 (1993).

“How LISA Works” Laser Interferometer Space Antenna. n.d.,
 <http://lisa.jpl.nasa.gov/TECHNOLOGY/challenges.html> (14FEB06).

“How LISA Works” Laser Interferometer Space Antenna. n.d.,
 <http://lisa.nasa.gov/TECHNOLOGY/LISA_interfer.html> (19APR2007).

Hughes, Steven, “Preliminary Optimal Orbit Design for the Laser Interferometer Space
 Antenna (LISA).”

“LISA Interferometry” Laser Interferometer Space Antenna. n.d.,
 <http://lisa.jpl.nasa.gov/TECHNOLOGY/LISA_interfer2.html> (19APR2007).

“Mission Strategy” Laser Interferometer Space Antenna. n.d.,
 <http://lisa.jpl.nasa.gov/STRATEGY/getThere.html> (19APR2007)

Saulson, Peter. “If light waves are stretched by gravitational waves, how can we use light
 as a ruler to detect gravitational waves?” American Journal of Physics 65, no. 6
 (1997).

Sweetser, Ted. “LISA Mission Description Version 2.1.” 2005.

Vallado, David. Fundamentals of Astrodynamics and Applications. New York:
 McGraw-Hill, 1997.

 29

Appendix A – Sample Analysis

Position Errors Along Various Directions

 30

 31

Velocity Errors Along Various Directions

 32

 33

Position-Velocity Errors Along Various Directions

 34

 35

Multi-Spacecraft Errors of Similar Type

 36

Appendix B – Rainplot

 37

Appendix C – Analysis Tools

Time Domain Analysis
This tool works by being given an insertion error scenario. It then checks the

available orbit data to determine if any propagation data are needed. If so, it will write a
file for the propagator containing the required propagations. When it finds the
propagation data, the tool will then create an array containing each formation parameter
as a function of time, which is then plotted on a series of graphs. The labels, titles, and
limits for each graph are automatically generated to show the insertion error scenario, the
limits for that particular formation parameter, and the units used.

Error Domain Analysis

Two Parameter Variation
 A high and low limit for each axis is specified, along with the type and direction
of error, and the spacecraft each affects. An array containing all combinations of possible
initial error based on the given step is created. The tool then goes through the available
propagation data to determine if any propagations are required. If so, it will write a file
for the propagator containing the required propagations. When it finds all of the
propagations, the tool will then run a time domain analysis for each error combination,
then calculate the percent time out of specification for the leg length rate of change. It
saves this information to a database. A surface plot is then formed with all labels and the
title automatically generated.

Full Parameter Variation
 Maximum position and velocity error magnitude are specified, as well as the
number of formations per trial to be used. A set of random initial errors is created for
each satellite for each formation and is then saved into a file for the propagator to read.
Upon completion of all propagation, the data are analyzed in the time domain, and the
time out of specification for the leg length rate of change parameter is determined.
Several statistics from each run is calculated including the mean, maximum, minimum,
and standard deviation. All data are then saved into a database.
 To generate the plot, the database is read, x’s and o’s are plotted, and a surface is
generated using cubic regression of the means of the type of plot specified (mean,
maximum, minimum, or standard deviation).
 Cross-section generation follows the same method as above, except the magnitude
of position error is held constant, and no regression is performed on the plot. In addition,
the plot is on a two-dimensional axis, not a three-dimensional one.

 38

Appendix D – Analysis Code

Miscellaneous Scripts

Initialize.m
%this script initializes the project to enable all forms of analysis to
be
%run by setting up global variables and plot labels.

global errdata
phase1
global abscissa
global ordinate
SFAG
MCAG
global mcagarray
rainplot

labelarray = [{'R Error (m)'};...
 {'T Error (m)'};...
 {'N Error (m)'};...
 {'Vr Error (\mum/Sec)'};...
 {'Vt Error (\mum/Sec)'};...
 {'Vn Error (\mum/Sec)'}];

[LRAdbData,LRAdbData5yr] = LRAdbInit();
curDB = 0;
LRAdbTemp = [];
LRAtemp = [];

datafilename.m
%This function creates a structure with the 3 filenames for the
spacecraft
%propagation data

function [fn] = datafilename(errdata)

 dbdir = 'c:\\data\\';

 fn.sc1 = [dbdir
'sc1\\sc1_x_',int2str(errdata(1)),'_y_',int2str(errdata(4)),'_z_',int2s
tr(errdata(7)),...
'_vx_',int2str(errdata(10)),'_vy_',int2str(errdata(13)),'_vz_',int2str(
errdata(16))];

 fn.sc2 = [dbdir
'sc2\\sc2_x_',int2str(errdata(2)),'_y_',int2str(errdata(5)),'_z_',int2s
tr(errdata(8)),...
'_vx_',int2str(errdata(11)),'_vy_',int2str(errdata(14)),'_vz_',int2str(
errdata(17))];

 39
 fn.sc3 = [dbdir
'sc3\\sc3_x_',int2str(errdata(3)),'_y_',int2str(errdata(6)),'_z_',int2s
tr(errdata(9)),...
'_vx_',int2str(errdata(12)),'_vy_',int2str(errdata(15)),'_vz_',int2str(
errdata(18))];

datacheck.m
%this function generates a flag value based on whether or not raw orbit
%data files exist

function [flag] = datacheck(fn)

 fn1id = fopen(fn.sc1);
 fn2id = fopen(fn.sc2);
 fn3id = fopen(fn.sc3);

 flag = 0;

 if fn1id == -1
 flag = 1;
 else
 fclose(fn1id);
 end
 if fn2id == -1
 flag = flag + 2;
 else
 fclose(fn2id);
 end
 if fn3id == -1
 flag = flag + 4;
 else
 fclose(fn3id);
 end

CurRunVar.m
%This function generates a string that is composed of
%sc1x_sc2x_sc3x_sc1y_etc...

function [CurRun] = CurRunVar(errdata)
 CurRun = [];
 for i = [1:17]
 CurRun = [CurRun,int2str(errdata(i)),'_'];
 end
 CurRun = [CurRun,int2str(errdata(18))];

md5.m
function y = md5(a1, a2, a3);
%MD5 verifies or generates a signature using the md5 algorithm.
% MD5(M) or MD5(M, 0) returns a message digest (signature)
% from the matrix M. Currently the classes double and char are
supported.
%
% MD5(M, 1) generates the digest from a file. M must be a char
% array with the filename/filepath.

 40
%
% You can also give a signature as the last argument. In this case
the
% generated signature will be compared against the given. Returns 0
or 1.
% Example: MD5(M, 1, '7dea362b3fac8e00956a4952a3d4f474');
%
% Md5 is actually not intended to work with large files (> 5 MB, see
notes),
% but is really comfortable to process directly matlab matrices.

% Notes: o There are more hashing routines, that could be
implemented
% eg. CRC, Adler, Haval, SHA, RMD...
% o There's a problem with incremental file reading. As a
workaround
% I had to load the whole file into the memory. I tested
with a 50 MB
% file but though it worked well, I should fix this
problem if there's
% a need to process large files.
% o For questions/comments/requests: support@treetron.ch.
%
% Credits: I used a freeware library with different hash
algorithms. It's from
% Alex? (Ritlabs) and was downloaded from Torrys. Thanks a
lot.
% Built with Borland Delphi.
%
% License: You may use and distribute md5 free of charge for
commercial and
% non-commercial use. Please don't modify this notice.
Before using this
% routine you have to accept the disclaimer of warranty
below.
%
% Warranty: md5 is supplied as is. The author disclaims all
warranties,
% expressed or implied, including, without limitation, the
warranties of
% merchantability and of fitness for any purpose. The
author assumes no
% liability for damages, direct or consequential, which
may result from the
% use of md5.
%
% Author: Hans-Peter Suter
% Revision: 0.7
% Date: 25.7.2003
%
% Copyright: Copyright (c) 2003, Treetron GmbH.
% All rights reserved.

if nargin == 3

 41
 b1 = a1; % matrix
 b2 = a2; % isFile
 b3 = a3; % signature
elseif nargin == 2
 if isa(a2, 'char')
 b1 = a1;
 b2 = 0;
 b3 = a2;
 else
 b1 = a1;
 b2 = a2;
 b3 = [];
 end
elseif nargin == 1
 b1 = a1;
 b2 = 0;
 b3 = [];
else
 error('3 arguments required');
end;

% some checks
if ~isempty(b3)
 if ~isa(b3, 'char')
 error('signature must be a char array');
 end
 if length(b3) ~= 32
 error('signature must have 32 chars');
 end
end
if ~(isa(b1, 'char') | isa(b1, 'double'))
 error('value/filename must be a double or char array');
end
if ~(b2 == 0 | b2 == 1)
 error('isFile must be 0 or 1');
end

% call dll
if isempty(b3)
 y = md5DLL(b1, b2);
else
 y = md5DLL(b1, b2, b3);
end;

Time Domain Analysis Scripts

maganalysis.m
%This script determines if the orbit data exists,
%then runs the actual analysis script, FormAnal()

fn = datafilename(errdata);
flag = datacheck(fn);

if ~flag

 42

 sc1 = dlmread(fn.sc1,',');
 sc2 = dlmread(fn.sc2,',');
 sc3 = dlmread(fn.sc3,',');

 magsc = FormAnal(sc1,sc2,sc3);
 fna = 'SC1_';
 fna = [fna,num2str(errdata(1)) '_'];
 fna = [fna,num2str(errdata(4)) '_'];
 fna = [fna,num2str(errdata(7)) '_'];
 fna = [fna,num2str(errdata(10)) '_'];
 fna = [fna,num2str(errdata(13)) '_'];
 fna = [fna,num2str(errdata(16)) '; SC2_'];
 fna = [fna,num2str(errdata(2)) '_'];
 fna = [fna,num2str(errdata(5)) '_'];
 fna = [fna,num2str(errdata(8)) '_'];
 fna = [fna,num2str(errdata(11)) '_'];
 fna = [fna,num2str(errdata(14)) '_'];
 fna = [fna,num2str(errdata(17)) '; SC3_'];
 fna = [fna,num2str(errdata(3)) '_'];
 fna = [fna,num2str(errdata(6)) '_'];
 fna = [fna,num2str(errdata(9)) '_'];
 fna = [fna,num2str(errdata(12)) '_'];
 fna = [fna,num2str(errdata(15)) '_'];
 fna = [fna,num2str(errdata(18))];

 %legrateanalyzer
 %LRAdbSave
 %analysisplotter
 %lldpplotter

else

 dlmwrite('c:\\pyshell\\scripts\\LISA\\runs.tsp',errdata,'-append')
 if (flag == 1) || (flag == 3) || (flag == 7) || (flag == 5)
 disp([fn.sc1,' does not exist'])
 end
 if (flag == 2) || (flag == 3) || (flag == 6) || (flag == 7)
 disp([fn.sc2,' does not exist'])
 end
 if (flag == 4) || (flag == 5) || (flag == 6) || (flag == 7)
 disp([fn.sc3,' does not exist'])
 end
end

FormAnal.m
%this function analyzes the raw orbital data files to generate the
%different formation parameters.

function [magsc] = FormAnal(sc1,sc2,sc3)

 earthbuff = dlmread('e:\\data\\earthvec',',');
 earthvec =
[earthbuff(:,1),earthbuff(:,2),earthbuff(:,3),earthbuff(:,4)];

 43
 sc12=sc2(:,2:4)-sc1(:,2:4);%km
 sc13=sc3(:,2:4)-sc1(:,2:4);
 sc23=sc3(:,2:4)-sc2(:,2:4);
 sc12v=1000.*(sc2(:,5:7)-sc1(:,5:7));%m/s
 sc13v=1000.*(sc3(:,5:7)-sc1(:,5:7));
 sc23v=1000.*(sc3(:,5:7)-sc2(:,5:7));

 magsc12 = sqrt(sum(sc12'.^2)');%km
 magsc13 = sqrt(sum(sc13'.^2)');
 magsc23 = sqrt(sum(sc23'.^2)');
 magsc12v = sqrt(sum(sc12v'.^2)');%m/s
 magsc13v = sqrt(sum(sc13v'.^2)');
 magsc23v = sqrt(sum(sc23v'.^2)');
 dmagsc12 = (dot(1000.*sc12',sc12v')'./(1000.*magsc12));%m/s
 dmagsc13 = (dot(1000.*sc13',sc13v')'./(1000.*magsc13));
 dmagsc23 = (dot(1000.*sc23',sc23v')'./(1000.*magsc23));

 angle1 = acosd(dot(sc12',sc13')'./(magsc12.*magsc13));%deg
 angle2 = acosd(-dot(sc12',sc23')'./(magsc12.*magsc23));
 angle3 = acosd(dot(sc23',sc13')'./(magsc23.*magsc13));

 angle1v = (dot(sc12v',1000.*sc13')'+dot(1000.*sc12',sc13v')'-
(dmagsc12.*1000.*magsc13+1000.*magsc12.*dmagsc13).*cosd(angle1));
 angle1v = angle1v./(-1000.*magsc12.*1000.*magsc13.*sind(angle1));

 angle2v = (dot(-sc12v',1000.*sc23')'+dot(1000.*-sc12',sc23v')'-
(dmagsc12.*1000.*magsc23+1000.*magsc12.*dmagsc23).*cosd(angle2));
 angle2v = angle2v./(-1000.*magsc12.*1000.*magsc23.*sind(angle2));
%angle2v = 0.*angle2v;
 angle3v = (dot(sc23v',sc13')'+dot(sc23',sc13v')'-
(dmagsc23.*magsc13+magsc23.*dmagsc13).*cosd(angle3));
 angle3v = angle3v./(-magsc23.*magsc13.*sind(angle3));
 angle3v = 0.*angle3v;

 scc = (sc1(:,2:4)+sc2(:,2:4)+sc3(:,2:4))./3;
 earthpos = earthvec(:,2:4);
 magscc = sqrt(sum(scc'.^2)');
 magearthpos = sqrt(sum(earthpos'.^2)');
 earthangle = acosd(dot(scc',earthpos')'./(magscc.*magearthpos));

 magsc=[magsc12,magsc13,magsc23,...
 dmagsc12,dmagsc13,dmagsc23,...
 angle1,angle2,angle3,...
 angle1v,angle2v,angle3v,...
 earthangle];

analysisplotter.m
%This script plots the various formation parameters WRT time

newfig = figure;

plot(magsc(:,1:3))
title(['Leg Length vs Time Plot (',fna,')'],'interpreter','none')
xlabel('Time from epoch (days)')

 44
ylabel('Leg Length (Km)')
legend('1-2','1-3','2-3')
line(xlim,[5.05e6 5.05e6],'Color','k')
line(xlim,[4.95e6 4.95e6],'Color','k')
saveas(newfig,['c:\\tsptemp\\LLP',fna(9:length(fna))],'fig')

newfig = figure;

plot(magsc(:,4:6))
title(['Leg Length Rate of Change vs Time Plot
(',fna,')'],'interpreter','none')
xlabel('Time from epoch (days)')
ylabel('Leg Length Rate of Change (m/sec)')
legend('1-2','1-3','2-3')
line(xlim,[15 15],'Color','k')
line(xlim,[-15 -15],'Color','k')
saveas(newfig,['c:\\tsptemp\\LLROCP',fna(9:length(fna))],'fig')

newfig = figure;

plot(magsc(:,7:9))
title(['Leg Angle Plot (',fna,')'],'interpreter','none')
xlabel('Time from epoch (days)')
ylabel('Leg Angle (deg)')
legend('Vertex 1','Vertex 2','Vertex 3')
line(xlim,[61.5 61.5],'Color','k')
line(xlim,[58.5 58.5],'Color','k')
saveas(newfig,['c:\\tsptemp\\LAP',fna(9:length(fna))],'fig')

newfig = figure;

plot(magsc(:,13))
title(['Earth Angle Plot (',fna,')'],'interpreter','none')
xlabel('Time from epoch (days)')
ylabel('Earth Angle (deg)')
line(xlim,[25 25],'Color','k')
line(xlim,[20 20],'Color','k')
saveas(newfig,['c:\\tsptemp\\EAP',fna(9:length(fna))],'fig')

baselineplots.m
%this script plots the baseline formation parameters WRT time

format long
format compact

errdata = zeros(1,18);

fn = datafilename(errdata);

sc1 = dlmread(fn.sc1,',');
sc2 = dlmread(fn.sc2,',');
sc3 = dlmread(fn.sc3,',');

 45
earthbuff = dlmread('e:\\data\\earthvec',',');
earth = [earthbuff(:,1),earthbuff(:,2),earthbuff(:,3),earthbuff(:,4)];

sc12=sc2(:,2:4)-sc1(:,2:4);%km
sc13=sc3(:,2:4)-sc1(:,2:4);
sc23=sc3(:,2:4)-sc2(:,2:4);
sc12v=1000.*(sc2(:,5:7)-sc1(:,5:7));%m/s
sc13v=1000.*(sc3(:,5:7)-sc1(:,5:7));
sc23v=1000.*(sc3(:,5:7)-sc2(:,5:7));

magsc12 = sqrt(sum(sc12'.^2)');%km
magsc13 = sqrt(sum(sc13'.^2)');
magsc23 = sqrt(sum(sc23'.^2)');
magsc12v = sqrt(sum(sc12v'.^2)');%m/s
magsc13v = sqrt(sum(sc13v'.^2)');
magsc23v = sqrt(sum(sc23v'.^2)');
dmagsc12 = (dot(1000.*sc12',sc12v')'./(1000.*magsc12));%m/s
dmagsc13 = (dot(1000.*sc13',sc13v')'./(1000.*magsc13));
dmagsc23 = (dot(1000.*sc23',sc23v')'./(1000.*magsc23));

angle1 = acosd(dot(sc12',sc13')'./(magsc12.*magsc13));%deg
angle2 = acosd(-dot(sc12',sc23')'./(magsc12.*magsc23));
angle3 = acosd(dot(sc23',sc13')'./(magsc23.*magsc13));

angle1v = (dot(sc12v',1000.*sc13')'+dot(1000.*sc12',sc13v')'-
(dmagsc12.*1000.*magsc13+1000.*magsc12.*dmagsc13).*cosd(angle1));
angle1v = angle1v./(-1000.*magsc12.*1000.*magsc13.*sind(angle1));

angle2v = (dot(-sc12v',1000.*sc23')'+dot(1000.*-sc12',sc23v')'-
(dmagsc12.*1000.*magsc23+1000.*magsc12.*dmagsc23).*cosd(angle2));
angle2v = angle2v./(-1000.*magsc12.*1000.*magsc23.*sind(angle2));
%angle2v = 0.*angle2v;
angle3v = (dot(sc23v',sc13')'+dot(sc23',sc13v')'-
(dmagsc23.*magsc13+magsc23.*dmagsc13).*cosd(angle3));
angle3v = angle3v./(-magsc23.*magsc13.*sind(angle3));
angle3v = 0.*angle3v;

%angle1v = acosd(dot(sc12v',sc13v')'./(magsc12v.*magsc13v));
%angle2v = acosd(-dot(sc12v',sc23v')'./(magsc12v.*magsc23v));
%angle3v = acosd(dot(sc23v',sc13v')'./(magsc23v.*magsc13v));

scc = (sc1(:,2:4)+sc2(:,2:4)+sc3(:,2:4))./3;
earthpos = earth(:,2:4);
magscc = sqrt(sum(scc'.^2)');
magearthpos = sqrt(sum(earthpos'.^2)');
earthangle = acosd(dot(scc',earthpos')'./(magscc.*magearthpos));

magsc=[magsc12,magsc13,magsc23,...
 dmagsc12,dmagsc13,dmagsc23,...
 angle1,angle2,angle3,...
 angle1v,angle2v,angle3v,...
 earthangle];

newfig = figure;

 46

plot(magsc(:,1:3))
title(['Leg Length vs Time Plot (baseline)'],'interpreter','none')
xlabel('Time from epoch (days)')
ylabel('Leg Length (Km)')
legend('1-2','1-3','2-3')
line(xlim,[5.05e6 5.05e6],'Color','k')
line(xlim,[4.95e6 4.95e6],'Color','k')

newfig = figure;

plot(magsc(:,4:6))
title(['Leg Length Rate of Change vs Time Plot
(baseline)'],'interpreter','none')
xlabel('Time from epoch (days)')
ylabel('Leg Length Rate of Change (m/sec)')
legend('1-2','1-3','2-3')
line(xlim,[15 15],'Color','k')
line(xlim,[-15 -15],'Color','k')

newfig = figure;

plot(magsc(:,7:9))
title(['Leg Angle Plot (baseline)'],'interpreter','none')
xlabel('Time from epoch (days)')
ylabel('Leg Angle (deg)')
legend('Vertex 1','Vertex 2','Vertex 3')
line(xlim,[61.5 61.5],'Color','k')
line(xlim,[58.5 58.5],'Color','k')

newfig = figure;

plot(magsc(:,10:12))
title(['Leg Angle Rate of Change Plot
(baseline)'],'interpreter','none')
xlabel('Time from epoch (days)')
ylabel('Leg Angle Rate of Change (deg/sec)')
legend('Vertex 1','Vertex 2','Vertex 3')

newfig = figure;

plot(magsc(:,13))
title(['Earth Angle Plot (baseline)'],'interpreter','none')
xlabel('Time from epoch (days)')
ylabel('Earth Angle (deg)')
line(xlim,[25 25],'Color','k')
line(xlim,[20 20],'Color','k')

Error Domain Analysis – Two Parameter Variation Scripts

SFDG.m
%generates data for the two-parameter variation plots
x = abscissa(3):abscissa(4):abscissa(5);
y = ordinate(3):ordinate(4):ordinate(5);

 47

run = 1;
deltas = [];
for a = x
 for b = y
 deltas(run).errdata = zeros(1,18);
 deltas(run).errdata(3*abscissa(2)-(3-abscissa(1))) = a;
 deltas(run).errdata(3*ordinate(2)-(3-ordinate(1))) = b;
 run = run+1;
 end
end

proplist = [];

for a = deltas
 errdata = a.errdata;
 fn = datafilename(errdata);
 flag = datacheck(fn);
 if (flag)
 proplist = [proplist;errdata];
 elseif isempty(LRAdbLoad(errdata,LRAdbData))
 sc1 = dlmread(fn.sc1,',');
 sc2 = dlmread(fn.sc2,',');
 sc3 = dlmread(fn.sc3,',');
 magsc = FormAnal(sc1,sc2,sc3);
 try
 legrateanalyzer
 catch
 disp('Error in Analysis, exiting script without saving...')
 return
 end
 LRAdbTempSave
 end
end

if ~isempty(proplist)
 dlmwrite('c:\\pyshell\\scripts\\LISA\\runs.tsp',proplist,'-
append','precision','%20.0f')
 disp(' ')
 disp(['There are ' num2str(length(proplist)) ' Propagations
Required.'])
 disp(' ')
else
 disp(' ')
 disp('No Propagations Required, saving.')
 disp(' ')
 if ~isempty(LRAtemp)
 LRAdbSave
 end
end

LRAdbLoad.m
%Retrieves data from the LRA database

function CurRunStruct = LRAdbLoad(errdata,LRAdbData)

 48

 currentrun = CurRunVar(errdata);
 currentrun = ['LRA_' md5(currentrun)];
 disp([CurRunVar(errdata) ' -> ' currentrun])

 if isfield(LRAdbData,currentrun)
 CurRunStruct = LRAdbData.(currentrun);
 else
 CurRunStruct = [];
 end

legrateanalyzer.m
%analyzes time out of spec for leg rate parameter over 10 years

highlim = 15;
lowlim = -15;

%magsc=[magsc12,magsc13,magsc23,...
% dmagsc12,dmagsc13,dmagsc23,...
% angle1,angle2,angle3,...
% angle1v,angle2v,angle3v,...
% earthangle];

binarray12 = (magsc(:,4) > highlim) | (magsc(:,4) < lowlim);
binarray13 = (magsc(:,5) > highlim) | (magsc(:,5) < lowlim);
binarray23 = (magsc(:,6) > highlim) | (magsc(:,6) < lowlim);

binarrayloc12 = find(binarray12);
binarrayloc13 = find(binarray13);
binarrayloc23 = find(binarray23);

if ~isempty(binarrayloc12)
 dbinarrayloc12 = diff(binarrayloc12) - 1;
 pulsestart12 = binarrayloc12(1);
 pulseend12 = binarrayloc12(length(binarrayloc12));
 spikes12 = find(dbinarrayloc12);
 numspikes12 = length(spikes12);
 if numspikes12 >= 1
 pulsestart12 =
[pulsestart12;binarrayloc12(find(dbinarrayloc12)+1)];
 pulseend12 = [binarrayloc12(find(dbinarrayloc12));pulseend12];
 end
else
 pulsestart12 = [];
 pulseend12 = [];
 spikes12 = [];
end

if ~isempty(binarrayloc13)
 dbinarrayloc13 = diff(binarrayloc13) - 1;
 pulsestart13 = binarrayloc13(1);
 pulseend13 = binarrayloc13(length(binarrayloc13));
 spikes13 = find(dbinarrayloc13);
 numspikes13 = length(find(diff(binarrayloc13)-1));
 if numspikes13 >= 1

 49
 pulsestart13 =
[pulsestart13;binarrayloc13(find(dbinarrayloc13)+1)];
 pulseend13 = [binarrayloc13(find(dbinarrayloc13));pulseend13];
 end
else
 pulsestart13 = [];
 pulseend13 = [];
 spikes13 = [];
end

if ~isempty(binarrayloc23)
 dbinarrayloc23 = diff(binarrayloc23) - 1;
 pulsestart23 = binarrayloc23(1);
 pulseend23 = binarrayloc23(length(binarrayloc23));
 spikes23 = find(dbinarrayloc23-1);
 numspikes23 = length(dbinarrayloc23);
 if numspikes23 >= 1
 pulsestart23 =
[pulsestart23;binarrayloc23(find(dbinarrayloc23)+1)];
 pulseend23 = [binarrayloc23(find(dbinarrayloc23));pulseend23];
 end
else
 pulsestart23 = [];
 pulseend23 = [];
 spikes23 = [];
end

LRAdbTempSave.m
%LRAdbTempSave - saves the legrateanalyzer output to a temporary
structure

dbdir = 'c:\\data\\LRAdb\\';

currentrun = CurRunVar(errdata);
currentrun = ['LRA_' md5(currentrun)];
disp([currentrun]);

LRAtemp.(currentrun).pulsestart12 = pulsestart12;
LRAtemp.(currentrun).pulseend12 = pulseend12;
LRAtemp.(currentrun).pulsestart13 = pulsestart13;
LRAtemp.(currentrun).pulseend13 = pulseend13;
LRAtemp.(currentrun).pulsestart23 = pulsestart23;
LRAtemp.(currentrun).pulseend23 = pulseend23;
LRAtemp.(currentrun).spikes12 = spikes12;
LRAtemp.(currentrun).spikes13 = spikes13;
LRAtemp.(currentrun).spikes23 = spikes23;

LRAdbSave.m
%LRAdbSave - saves the temporary structure to the LRA database

dbdir = 'c:\\data\\LRAdb\\';

currentrun = CurRunVar(errdata);
currentrun = ['LRA_' md5(currentrun)];

 50

buff = fieldnames(LRAtemp);
for a =1:length(buff)
 LRAdbData.(char(buff(a))) = LRAtemp.(char(buff(a)));
end

save([dbdir 'LRAdb.mat'],'LRAdbData');

LRATPctGraph.m
%LRATPctGraph - Plots the two-parameter variation data

b = 1;
c = 1;
run = 1;
z = zeros(length(y),length(x));
for a = deltas
 data = LRAdbLoad(a.errdata,LRAdbData);
 z(c,b) = sum(data.pulseend12 - data.pulsestart12)/3654;
 c = c+1;
 if c == (length(y)+1)
 b = b+1;
 c = 1;
 end
end
surf(x,y,z);
xlabel(labelarray(abscissa(2)))
ylabel(labelarray(ordinate(2)))
zlabel('Normalized Time Out of Spec')

Error Domain Analysis – Full Parameter Variation Scripts

MCDG1.m
% Monte Carlo Data Generator part 1

rand('state', sum(100*clock));
errdataruns = rand(mcagarray(1),18) - 0.5;
errdataruns(:,1:9) = round(mcagarray(2)*errdataruns(:,1:9));
errdataruns(:,10:18) = round(mcagarray(3)*errdataruns(:,10:18));

dlmwrite('c:\\pyshell\\scripts\\LISA\\runs.tsp',errdataruns,'-append')

MCDG25yr.m
MCDG2LRA5yr
clear errdataruns

MCDG2LRA5yr.m
%Monte Carlo Data Generator part 2

PooSraw = [];

for i = 1:mcagarray(1)
 errdata = errdataruns(i,:);

 51

 fn = datafilename(errdata);
 sc1 = dlmread(fn.sc1,',');
 sc2 = dlmread(fn.sc2,',');
 sc3 = dlmread(fn.sc3,',');
 magsc = FormAnal(sc1,sc2,sc3);
 legrateanalyzer5yr
 currentrun = ['LRA_' md5(CurRunVar(errdata))];
 disp(currentrun)

 data.pulsestart12 = pulsestart12;
 data.pulseend12 = pulseend12;
 data.pulsestart13 = pulsestart13;
 data.pulseend13 = pulseend13;
 data.pulsestart23 = pulsestart23;
 data.pulseend23 = pulseend23;
 data.spikes12 = spikes12;
 data.spikes13 = spikes13;
 data.spikes23 = spikes23;

 binarray12 = zeros(1,1827);
 binarray13 = zeros(1,1827);
 binarray23 = zeros(1,1827);
 for i = 1:length(data.pulsestart12)
 binarray12(data.pulsestart12(i):data.pulseend12(i)) = 1;
 end
 for i = 1:length(data.pulsestart13)
 binarray13(data.pulsestart13(i):data.pulseend13(i)) = 1;
 end
 for i = 1:length(data.pulsestart23)
 binarray23(data.pulsestart23(i):data.pulseend23(i)) = 1;
 end

 PooSraw = [PooSraw,sum((binarray12 | binarray13) | binarray23) /
1827];

end

PooSmean = mean(PooSraw);
PooSstd = std(PooSraw);
PooSmax = max(PooSraw);
PooSmin = min(PooSraw);

PooSdata = LRAPooSLoad5yr(mcagarray);

if isempty(PooSdata)
 PooSdata.mean = PooSmean;
 PooSdata.std = PooSstd;
 PooSdata.max = PooSmax;
 PooSdata.min = PooSmin;
else
 PooSdata.mean = [PooSdata.mean,PooSmean];
 PooSdata.std = [PooSdata.std,PooSstd];
 if PooSmax > PooSdata.max
 PooSdata.max = PooSmax;

 52
 end
 if PooSmin < PooSdata.min
 Poosdata.min = PooSmin;
 end
end
LRAPooSSave5yr

legrateanalyzer5yr.m
%analyzes time out of spec for leg rate parameter over 5 years
highlim = 15;
lowlim = -15;

%magsc=[magsc12,magsc13,magsc23,...
% dmagsc12,dmagsc13,dmagsc23,...
% angle1,angle2,angle3,...
% angle1v,angle2v,angle3v,...
% earthangle];

binarray12 = (magsc(1:1827,4) > highlim) | (magsc(1:1827,4) < lowlim);
binarray13 = (magsc(1:1827,5) > highlim) | (magsc(1:1827,5) < lowlim);
binarray23 = (magsc(1:1827,6) > highlim) | (magsc(1:1827,6) < lowlim);

binarrayloc12 = find(binarray12);
binarrayloc13 = find(binarray13);
binarrayloc23 = find(binarray23);

if ~isempty(binarrayloc12)
 dbinarrayloc12 = diff(binarrayloc12) - 1;
 pulsestart12 = binarrayloc12(1);
 pulseend12 = binarrayloc12(length(binarrayloc12));
 spikes12 = find(dbinarrayloc12);
 numspikes12 = length(spikes12);
 if numspikes12 >= 1
 pulsestart12 =
[pulsestart12;binarrayloc12(find(dbinarrayloc12)+1)];
 pulseend12 = [binarrayloc12(find(dbinarrayloc12));pulseend12];
 end
else
 pulsestart12 = [];
 pulseend12 = [];
 spikes12 = [];
end

if ~isempty(binarrayloc13)
 dbinarrayloc13 = diff(binarrayloc13) - 1;
 pulsestart13 = binarrayloc13(1);
 pulseend13 = binarrayloc13(length(binarrayloc13));
 spikes13 = find(dbinarrayloc13);
 numspikes13 = length(find(diff(binarrayloc13)-1));
 if numspikes13 >= 1
 pulsestart13 =
[pulsestart13;binarrayloc13(find(dbinarrayloc13)+1)];
 pulseend13 = [binarrayloc13(find(dbinarrayloc13));pulseend13];
 end
else

 53
 pulsestart13 = [];
 pulseend13 = [];
 spikes13 = [];
end

if ~isempty(binarrayloc23)
 dbinarrayloc23 = diff(binarrayloc23) - 1;
 pulsestart23 = binarrayloc23(1);
 pulseend23 = binarrayloc23(length(binarrayloc23));
 spikes23 = find(dbinarrayloc23-1);
 numspikes23 = length(dbinarrayloc23);
 if numspikes23 >= 1
 pulsestart23 =
[pulsestart23;binarrayloc23(find(dbinarrayloc23)+1)];
 pulseend23 = [binarrayloc23(find(dbinarrayloc23));pulseend23];
 end
else
 pulsestart23 = [];
 pulseend23 = [];
 spikes23 = [];
end

LRAPooSLoad5yr.m
%loads specific rainplot data from the LRAPooS (Percent out of Spec)
%database

function [data] = LRAPooSLoad(mcagarray)

dbdir = 'c:\\data\\LRAdb\\';

load([dbdir 'LRAPooS5yr.mat']);
nstr = ['n_' num2str(mcagarray(1))];
pstr = ['p_' num2str(mcagarray(2))];
vstr = ['v_' num2str(mcagarray(3))];

if isfield(LRAPooSData, nstr) & isfield(LRAPooSData.(nstr), pstr) &
isfield(LRAPooSData.(nstr).(pstr), vstr)
 data = LRAPooSData.(nstr).(pstr).(vstr);
else
 data = [];
end

LRAPooSSave5yr.m
%LRAPooSSave - saves data into the rainplot LRAPooS database

dbdir = 'c:\\data\\LRAdb\\';

load([dbdir 'LRAPooS5yr.mat']);
nstr = ['n_' num2str(mcagarray(1))];
pstr = ['p_' num2str(mcagarray(2))];
vstr = ['v_' num2str(mcagarray(3))];

LRAPooSData.(nstr).(pstr).(vstr) = PooSdata;
save([dbdir 'LRAPooS5yr.mat'],'LRAPooSData');

 54
Rainplotter.m
%creates the actual rainplot
function [state] =
Rainplotter(dbdir,dbfile,db,ncurr,rplottitle,plim,vlim,type)

load([dbdir dbfile]);

eval(['narray = fieldnames(',db,');']);
eval(['parray = fieldnames(',db,'.(ncurr));']);

p = [];
v = [];
z = [];
for i = 1:length(parray)
 pcurr = char(parray(i));
 pcurrnum = str2num(pcurr(3:length(pcurr)));
 eval(['varray = fieldnames(',db,'.(ncurr).(pcurr));']);
 for j = 1:length(varray)
 vcurr = char(varray(j));
 vcurrnum = str2num(vcurr(3:length(vcurr)));
 eval(['z = [z,',db,'.(ncurr).(pcurr).(vcurr).',type,'];']);
 eval(['n = length(',db,'.(ncurr).(pcurr).(vcurr).',type,');']);
 p = [p,pcurrnum.*ones(1,n)];
 v = [v,vcurrnum.*ones(1,n)];
 end
end

figure

plot3(p,v,z,'xk',p,v,zeros(length(p),length(v)),'ok'),hold

if plim
 xlim([0 plim])
else
 plim = xlim;
 plim = plim(2);
end

if vlim
 ylim([0 vlim])
else
 vlim = xlim;
 vlim = vlim(2);
end

tx = 0:plim/100:plim;
ty = 0:vlim/100:vlim;
[XI,YI] = meshgrid(tx,ty);
ZI = griddata(p,v,z,XI,YI,'cubic');
surf(XI,YI,ZI,'FaceAlpha',0.33,'EdgeAlpha',0.33),hold off
zmin = zlim;
if zmin(1) < 0
 zlim([0 zmin(2)]);
end
grid on

 55
xlabel('Position Error (m)')
ylabel('Velocity Error ({\mu}m/sec)')
zlabel('Mean Normalized Time out of Spec')
title(rplottitle)

Error Domain Analysis – Full Variation Rainplot Cross-Section
Scripts

initialize.m
%this script initializes the project to enable all forms of analysis to
be
%run for rplotcross-section

global errdata
MCAG
global mcagarray

MCDG1b.m
% Monte Carlo Data Generator part 1 - rplotcross-section

rand('state', sum(100*clock));

bigrun = [];
bigmcagarray = [];
vvar = [40000:3000:70000];

for i = 1:length(vvar)
 for j = 1:6
 bigmcagarray = [bigmcagarray;mcagarray(1),0,vvar(i)];
 errdataruns = rand(mcagarray(1),18) - 0.5;
 errdataruns(:,1:9) = round(0*errdataruns(:,1:9));
 errdataruns(:,10:18) = round(vvar(i)*errdataruns(:,10:18));
 bigrun = [bigrun;errdataruns];
 end
end

dlmwrite('c:\\pyshell\\scripts\\LISA\\runs.tsp',bigrun,'-append')
dlmwrite('c:\\data\\temp\\batchruns.tsp',bigrun,'-append')
dlmwrite('c:\\data\\temp\\batchv.tsp',bigmcagarray,'-append')

MCDG25yrb.m
%modified from rplotcross-section

bigmcagarray = load('c:\\data\\temp\\batchv.tsp');
bigrun = load('c:\\data\\temp\\batchruns.tsp');
mcagarray(3) = 0;
[m,n] = size(bigmcagarray);
for amyers = 1:m
 mcagarray = bigmcagarray(amyers,:);
 errdataruns = bigrun(1+50*(amyers-1):50+50*(amyers-1),:);
 MCDG2LRA5yrb
 disp('------------')
 disp(['Run ' num2str(amyers) ' of ' num2str(m) ' complete.'])

 56
 disp('------------')
end
clear errdataruns
clear varray
clear bigrun
delete('c:\\data\\temp\\batchv.tsp');
delete('c:\\data\\temp\\batchruns.tsp');

MCDG2LRA5yrb.m
%Monte Carlo Data Generator part 2 modified for rplotcross-section

PooSraw = [];

for i = 1:mcagarray(1)
 errdata = errdataruns(i,:);

 fn = datafilename(errdata);
 sc1 = dlmread(fn.sc1,',');
 sc2 = dlmread(fn.sc2,',');
 sc3 = dlmread(fn.sc3,',');
 magsc = FormAnal(sc1,sc2,sc3);
 legrateanalyzer5yr
 currentrun = ['LRA_' md5(CurRunVar(errdata)) ' - '
num2str(amyers) ' - ' num2str(i)];
 disp(currentrun)

 data.pulsestart12 = pulsestart12;
 data.pulseend12 = pulseend12;
 data.pulsestart13 = pulsestart13;
 data.pulseend13 = pulseend13;
 data.pulsestart23 = pulsestart23;
 data.pulseend23 = pulseend23;
 data.spikes12 = spikes12;
 data.spikes13 = spikes13;
 data.spikes23 = spikes23;

 binarray12 = zeros(1,1827);
 binarray13 = zeros(1,1827);
 binarray23 = zeros(1,1827);
 for i = 1:length(data.pulsestart12)
 binarray12(data.pulsestart12(i):data.pulseend12(i)) = 1;
 end
 for i = 1:length(data.pulsestart13)
 binarray13(data.pulsestart13(i):data.pulseend13(i)) = 1;
 end
 for i = 1:length(data.pulsestart23)
 binarray23(data.pulsestart23(i):data.pulseend23(i)) = 1;
 end

 PooSraw = [PooSraw,sum((binarray12 | binarray13) | binarray23) /
1827];

end

PooSmean = mean(PooSraw);

 57
PooSstd = std(PooSraw);
PooSmax = max(PooSraw);
PooSmin = min(PooSraw);

PooSdata = LRAPooSLoad5yrb(mcagarray);

if isempty(PooSdata)
 PooSdata.mean = PooSmean;
 PooSdata.std = PooSstd;
 PooSdata.max = PooSmax;
 PooSdata.min = PooSmin;
else
 PooSdata.mean = [PooSdata.mean,PooSmean];
 PooSdata.std = [PooSdata.std,PooSstd];
 PooSdata.max = [PooSdata.max,PooSmax];
 PooSdata.min = [PooSdata.min,PooSmin];
end
LRAPooSSave5yrb

LRAPooSLoad5yrb.m
function [data] = LRAPooSLoad(mcagarray)

dbdir = 'c:\\data\\LRAdb\\';

load([dbdir 'LRAPooS5yr.mat']);
nstr = ['n_' num2str(mcagarray(1))];
pstr = ['p_' num2str(mcagarray(2))];
vstr = ['v_' num2str(mcagarray(3))];

if isfield(LRAPooSData, nstr) & isfield(LRAPooSData.(nstr), pstr) &
isfield(LRAPooSData.(nstr).(pstr), vstr)
 data = LRAPooSData.(nstr).(pstr).(vstr);
else
 data = [];
end

LRAPooSSave5yrb.m
%LRAPooSSave

dbdir = 'c:\\data\\LRAdb\\';

load([dbdir 'LRAPooS5yr.mat']);
nstr = ['n_' num2str(mcagarray(1))];
pstr = ['p_' num2str(mcagarray(2))];
vstr = ['v_' num2str(mcagarray(3))];

LRAPooSData.(nstr).(pstr).(vstr) = PooSdata;
save([dbdir 'LRAPooS5yr.mat'],'LRAPooSData');

rplotcs.m
%rplotcs - creates the actual rainplotcross-section

dbdir = 'c:\\data\\LRAdb\\';

 58
load([dbdir 'LRAPooS5yr.mat']);
varray = fieldnames(LRAPooSData.n_50.p_0);
z = [];
zraw = [];
v = [];
vraw = [];
zverge = [];
zbuff = [];

for j = 1:length(varray)
 vcurr = char(varray(j));
 vcurrnum = str2num(vcurr(3:length(vcurr)));
 z = [z, mean(LRAPooSData.n_50.p_0.(vcurr).mean)];
 zraw = [zraw,LRAPooSData.n_50.p_0.(vcurr).mean];
 vraw =
[vraw,vcurrnum.*ones(1,length(LRAPooSData.n_50.p_0.(vcurr).mean))];
 for k = 1:length(LRAPooSData.n_50.p_0.(vcurr).mean)
 zbuff = [zbuff;mean(LRAPooSData.n_50.p_0.(vcurr).mean(1:k))];
 end
% zverge = [zverge,zbuff];
 zbuff = [];
 n = length(LRAPooSData.n_50.p_0.(vcurr).max);
 v = [v,vcurrnum];
end

plot(v,z,'-k',vraw,zraw,'xk')
xlabel('V Error (\mum/sec)')
ylabel('Mean Normalized Time Out of Spec')
title('Leg Rate Rainplot Cross Section (P=0)')

	Smythe RDP 2007
	Smythe TSPReportFinalRev01
	An Examination of Acceptable Navigation Accuracy for LISA Orbits
	Abstract
	List of Figures
	List of Tables
	List of Symbols
	Overview
	Background
	Gravitational Waves
	Interferometers
	Satellites
	Orbit Propagation and Analysis

	Analysis
	Phase One - Insertion Error Analysis
	Background
	Formation Analysis With Respect to Time
	Formation Analysis With Respect to Two Input Variation
	Formation Analysis of Full Input Variation

	Conclusions
	Future Work
	Phase Two - Tracking System Accuracy

	References
	Appendix A – Sample Analysis
	Position Errors Along Various Directions
	Velocity Errors Along Various Directions
	Position-Velocity Errors Along Various Directions
	Multi-Spacecraft Errors of Similar Type

	Appendix B – Rainplot
	Appendix C – Analysis Tools
	Time Domain Analysis
	Error Domain Analysis
	Two Parameter Variation
	Full Parameter Variation

	Appendix D – Analysis Code
	Miscellaneous Scripts
	Initialize.m
	datafilename.m
	datacheck.m
	CurRunVar.m
	md5.m

	Time Domain Analysis Scripts
	maganalysis.m
	FormAnal.m
	analysisplotter.m
	baselineplots.m

	Error Domain Analysis – Two Parameter Variation S
	SFDG.m
	LRAdbLoad.m
	legrateanalyzer.m
	LRAdbTempSave.m
	LRAdbSave.m
	LRATPctGraph.m

	Error Domain Analysis – Full Parameter Variation
	MCDG1.m
	MCDG25yr.m
	MCDG2LRA5yr.m
	legrateanalyzer5yr.m
	LRAPooSLoad5yr.m
	LRAPooSSave5yr.m
	Rainplotter.m

	Error Domain Analysis – Full Variation Rainplot C
	initialize.m
	MCDG1b.m
	MCDG25yrb.m
	MCDG2LRA5yrb.m
	LRAPooSLoad5yrb.m
	LRAPooSSave5yrb.m
	rplotcs.m

